Виды калибров. Щупы

Контроль деталей в машиностроении производится универсальными измерительными инструментами, приборами и предельными калибрами. Ознакомление с наи­более распространенными инструментами и приборами состоится при выполнении практических и лабо­раторных работ, поэтому подробно рассмотрим лишь контроль деталей предельными калибрами.

Детали с допуском 6 … 18 квалитетов проверяют предельны­ми калибрами чаще всего в условиях массового и крупносерийного производств. С помощью предельных калибров определяется не абсолют­ное значение размера детали, а её годность, то есть выходит или не вы­ходит действительный размер детали за установленные предельные размеры.

Таким обра­зом, предельный калибр – бесшкальный измерительный инструмент, служащий для проверки годности деталей по предельным размерам.

В комплект предельных калибров для контроля гладких цилиндри­ческих деталей входят:

Проходной калибр (ПР) для проверки проходного предела (макси­мум материала детали);

Непроходной калибр (НЕ) для проверки непроходного предела (минимум материала детали).

Деталь считается годной, если проходной калибр под действием силы тяжести или примерно равной ей проходит, а непроходной калибр не проходит по контролируемой поверхности детали. В этом случае действительный размер детали находится между заданными предельными размерами (рисунок 3.1).

Рисунок 3.1 – Схема контроля деталей предельными калибрами

Если проходной калибр не проходит, исправимый брак; если непроходной калибр проходит, брак неисправимый. Брак – явление чрезвычайное. При контроле проходные калибры, как правило, проходят, а непроходные калибры не проходят. Поэтому проходные калибры изнашиваются, а непроходные практически не изнашиваются. По этой же причине нет необходимости делать непроходные калибры с большой длиной рабочей поверхности, расходуя дорогостоящий ин­струментальный материал. А проходные калибры по сравнению с непроходными делают с большей длиной рабочей поверхности, чтобы исключить перекос и заедание при контроле и обеспечить надёжное направление калибра по про­веряемой поверхности. При контроле малых размеров вес калибра может оказаться недостаточным для его свободного прохождения. Для больших размеров наоборот стремятся ограничить влияние веса калибра на качество контроля, вводя в конструкцию калибра элементы облегчения его веса. Калибры должны иметь наибольшую жёсткость при наименьшем весе, что особенно важно для больших скоб.

Классификация калибров

Гладкие предельные калибры различаются по наименованию, конструкции и по назначению.

По наименованию калибры делятся на:

− пробки.

По конструкции калибры бывают:

Жёсткие и регулируемые;

Цель­ные и составные;

Односторонние, двухсторонние и совмещённые.

По назначению калибры делятся на:

− рабочие;

− приёмные;

− контроль­ные.

Рабочие калибры (Р-ПР, Р-НЕ) предназначены для контроля деталей в процессе их изготовления. Эти калибры используют рабочие и кон­тролёры ОТК завода-изготовителя. При этом контролёры пользуются частично изношенными калибрами Р-ПР и новыми калибрами Р-НЕ, так называемыми приёмными калибрами.

Приёмные калибры предназначены для проверки деталей представителями заказчика. Эти калибры были официально в системе ОСТ. В современных стандартах они не предусмотрены, но они могут быть введены стандартами предприятий. Приёмные ка­либры специально не изготовляются, а отбираются из рабочих калибров (частично изношен­ных Р-ПР и новых Р-НЕ). Это делается для страховки от появления случайного исправимого брака и для того, чтобы правильно принятые рабочими калибрами детали не были забракованы калибрами контролёра и представителя заказчика.

Контрольные калибры (контркалибры) предназначены для установки на размер ре­гулируемых калибров-скоб и контроля нерегулируемых калибров-скоб в процессе их изготовления и эксплуатации. Контркалибры предназначены только для скоб, то есть они применяются только при изготовлении валов. При­менение контркалибров при обработке отверстий экономически неце­лесообразно: рабочие калибры-пробки проще контролировать приборами, чем применять трудно изготавливаемые и дорогостоящие контркалибры-скобы.

Следовательно, контркалибры – только пробки:

– К-ПР – для скобы Р-ПР;

– К-НЕ – для скобы Р-НЕ;

– К-И – для изъятия из эк­сплуатации предельно изношенных скоб Р-ПР.

Несмотря на малую величину допуска контркалибров, они все же искажают установленные поля допусков на изготовление и износ рабочих калибров, поэтому контркалибры по возможности не следует применять. Их целесообразно заменять, особенно в мелкосерийном производстве, и тем более в единичном, концевыми мерами длины или использовать универсальные измерительные приборы. Детали с допуском 01...5 квалитетов не рекомендуется прове­рять калибрами, так как при малых допусках они вносят значительную по­грешность измерения, а изготовление калибров такой точности сложно и трудоёмко. В таких случаях детали проверяют универсальными измери­тельными средствами и приборами.

Для снижения затрат на калибры стремятся увеличить их износо­стойкость за счёт применения твёрдых сплавов и нанесения износостойких покрытий на их рабочие поверхности.

3.2 Допуски калибров

Допуски и отклонения размеров калибров устанавливает ГОСТ 24853-81«Калибры гладкие для размеров до 500 мм. Допуски». Стандарт предусматривает следующие допуски и отклонения калибров:

допуск на изготовление калибров-пробок для отверстия;
H 1 допуск на изготовление калибров-скоб для вала;
H p допуск на изготовление контрольного калибра для скобы;
отклонение середины поля допуска на изготовление пробки Р-ПР относительно наименьшего предельного размера отверстия;
отклонение середины поля допуска на изготовление скобы Р-ПР относительно наибольшего предельного размера вала;
допустимый выход размера изношенной пробки Р-ПР за границу поля допуска отверстия;
допустимый выход размера изношенной скобы Р-ПР за границу поля допуска вала;
величина для компенсации погрешности контроля калибрами отверстий с размерами свыше 180 мм;
величина для компенсации погрешности контроля калибрами валов с размерами свыше 180 мм.

3.3 Схемы расположения полей допусков калибров

ГОСТ 24853-81предусматривает восемь схем расположения полей допусков калибров в зависимости от квалитетов и номинальных разме­ров проверяемых деталей. Наиболее общими являются схемы для отверстий (рису- нок 3.2 а) и валов (рисунок 3.2 б) квалитетов 6, 7 и 8 с номинальными размерами свыше 180 мм.

Остальные схемы представляют собой частные случаи указанных общих схем расположения полей допусков калибров. Для калибров Р-ПР кроме до­пуска на изготовление предусматривается допуск на их износ. При этом поле допуска калибра сдвинуто внутрь поля допуска детали, а поле до­пуска на износ выходит за границу поля допуска детали. Для деталей 9...17 квалитетов (при больших допусках) поле допуска на износ ка­либра располагается внутри поля допуска детали и ограничено ее про­ходным пределом, т.е. Y = 0 и Y 1 = 0. При номинальных размерах до 180 мм погрешность контроля деталей калибрами незначительна и поэтому не учитывается, т.е. и .

Рисунок 3.2 – Схемы расположения полей допусков калибров для отверстий (а) и валов (б) квалитетов 6, 7 и 8 с номинальными размерами свыше 180 мм

Следует отметить, что на схемах износ калибров Р-ПР нагляднее и удобнее изображать не границей износа, а полем допуска на износ по аналогии с полем допуска на изготовление, как это показано на рисунке 3.3.

Сдвиг полей допусков калибров и границ износа их проходных сторон внутрь поля допуска детали устраняет возможность искажения ха­рактера посадок и гарантирует получение размеров годных деталей в пределах установленных допусков. Этого в полной мере невозможно до­биться для точных деталей (квалитеты 6...8) ввиду довольно жёстких допусков и повышения стоимости изготовления деталей. Поля допусков на износ калибров Р-ПР для таких деталей выходят за пределы проверяемого поля допуска. Допуск детали при этом несколько расширяется, не вызы­вая нарушения взаимозаменяемости.

3.4 Расчёт исполнительных размеров калибров

Исполнительными размерами калибров называются размеры, по ко­торым изготовляются калибры.

На чертежах калибров допуски на их изготовление задают «в тело» калибра, то есть как для основного отверстия и основного вала. В качестве номинального размера калибра принимают размер, соответствующий наибольшему количеству металла в калибре. Таким образом, на чертеже скобы проставляют её наименьший предельный размер с положительным отклонением, для пробки (рабочей и контрольной) – наибольший размер с отрицательным отклонением.

Приведём основные расчётные формулы для определения размеров калибров.

Наибольший размер новой проходной пробки:

.

Наименьший размер изношенной проходной пробки

Наибольший размер непроходной пробки

.

Наименьший размер проходной новой скобы

.

Наибольший размер изношенной проходной скобы

Наименьший размер непроходной скобы

.

Наибольшие размеры контрольных калибров:

; ;

.

Размеры калибров, полученные расчётом, округляются в соотве­тствии с ГОСТ 24853-81. Табличный метод расчёта исполнительных размеров рабочих ка­либров, более простой для практического применения, изложен в этом же стандарте.

Рассмотрим пример расчёта исполнительных размеров калибров для контроля деталей соединения .

По ГОСТ 25347-82 и ГОСТ 24853-81находим предельные откло­нения размеров деталей и необходимые данные для расчёта размеров калибров:

EI = 0; ES =+ 30мкм; ei = – 29 мкм; es = – 10 мкм;

H = H 1 = 5 мкм; H P = 2 мкм; Z = Z 1 = 4 мкм;

Y = Y 1 = 3 мкм; a = a 1 = 0.

Построим схему расположения полей допусков калибров (рисунок 3.3).

Рисунок 3.3 – Схема к расчёту размеров калибро в

Рабочие калибры-пробки для отверстия :

Исполнительные размеры калибров-пробок:

; ; .

Рабочие калибры-скобы для вала :

Исполнительные размеры калибров-скоб:

; ; .

Контрольные калибры:

Исполнительные размеры контрольных калибров:

К – ПР = 59,987 –0,002 ; К – И = 59,994 –0,002 ; К – НЕ = 59,972 –0,002 .

1 Что такое гладкий предельный калибр?

2 Какие виды гладких калибров применяются на производстве?

3 Чем отличаются контрольные калибры от рабочих калибров?

4 В каких условиях производства применяется контроль калибрами?

5 В каких условиях производства применяется контроль универсальными измерительными инструментами?

4 Допуски и посадки

призматических шпоночных соединений

Шпоночные соединения предназначены, как правило, для соединения с валами зубчатых колёс, шкивов, маховиков, муфт и других деталей и служат для передачи крутящих моментов. В связи с разнообразием конструкций остановимся на рассмотрении только наиболее широко применяемого в машиностроении соединения с призматическими шпонками, схематическое изображение которого показано на рисунке 4.1 а.

Размеры, допуски, посадки и предельные отклонения соединений с призматическими шпонками регламентированы ГОСТ 23360-78. Стандартом установлены поля допусков по ширине шпонки и шпоночных пазов для свободного, нормального и плотного соединений. Для ширины пазов вала и втулки допускаются любые сочетания полей допусков, приведённых на рисунке 4.1 б.

Как уже было сказано ранее, посадки шпоночных соединений назначаются в системе вала. Пример шпоночного соединения вала со втулкой показан на рисунке 4.2.

Рисунок 4.1 – Поля допусков шпоночных соединений


Рисунок 4.2 – Пример указания посадок шпоночного соединения на чертежах

Контроль размеров, симметричности расположения и прямолинейности шпоночных пазов втулки и вала осуществляется универсальными измерительными инструментами, гладкими предельными и специальными калибрами.

Контрольные вопросы и задания

1 В каких случаях и для чего применяются шпоночные соединения?

2 Применяются ли шпоночные соединения при переходных посадках?

3 В какой системе назначаются посадки шпоночных соединений?

4 Как осуществляется контроль размеров шпоночных пазов?

5 Допуски и посадки подшипников качения

У подшипников качения присоединительными поверхностями явля­ются наружная поверхность наружного и внутренняя поверхность внутреннего колец. По присоединительным поверхностям подшипников обеспечивается полная внешняя взаимозаменяемость, которая позво­ляет быстро монтировать их, а также заменять изношенные подшипники при хорошем качестве сборки.

5.1 Классы точности подшипников качения

Качество подшипников определяется точностью изготовления их деталей и точностью сборки. Основными показателями точности подшипников и их деталей являются:

Точность размеров присоединительных поверхностей;

Точность формы и расположения поверхностей колец и шерохова­тость их поверхностей;

Точность формы и размеров тел качения и шероховатость их по­верхностей;

Точность вращения, характеризуемая радиальным и торцовым бие­нием дорожек качения и торцов колец.

В зависимости от этих показателей точности по ГОСТ 520-2011 «Подшипники качения. Общие технические условия» установлены следующие клас­сы точности подшипников, указанные в порядке повышения точности:

− нормальный, 6, 5, 4, Т, 2 – для шариковых и роликовых радиальных и шариковых радиально-упорных подшипников;

− 0, нормальный, 6Х, 6, 5, 4, 2 – для роликовых конических подшипников;

− нормальный, 6, 5, 4, 2 – для упорных и радиально-упорных подшипников.

Самым точным является второй класс точности. Класс точности подшипника выбирают исходя из требований, предъявляемых к точности вращения и условиям работы механизма. Для ме­ханизмов общего назначения обычно применяют подшипники класса точ­ности 0. Подшипники более высоких классов точности применяют при больших оборотах и высокой точности вращения вала, например, для шпинделей шлифовальных станков, авиадвигате­лей, приборов и др. Для гироскопических и других прецизионных приборов и механизмов применяются подшипники класса точности 2.

Класс точности указывается через тире перед условным обозначением серии подшипника, например, 6–205. Для всех подшипников, кроме конических, класс точности «нормальный» обозначается знаком «0».

Учитывая большое многообразие конструкций подшипников, ограничимся рассмотрением посадок только для шариковых радиальных подшипников.

5.2 Допуски и посадки соединений с подшипниками качения

Посадки наружного кольца подшипника с корпусом осуществляются в системе вала, посадки внутреннего кольца с валом – в системе от­верстия. Диаметры наружного и внутреннего колец подшипника приня­ты соответственно за диаметры основного вала и основного отверстия с определённой оговоркой, о чём будет сказано дальше.

В большинстве случаев, в частности при вращающемся вале, внутреннее кольцо подшипника монтируется на валу неподвижно. Для этого необходимо применять либо переход­ные посадки, либо посадки с натягом. Однако применение тех и дру­гих посадок исключено по следующим причинам:

Первые требуют дополнительного крепления (шпонки и т.д.), что усложнит конструкцию подшипника и неприемлемо по точ­ности (неравномерные деформации кольца при закалке из-за концен­траторов напряжений) или вообще конструктивно неосуществимо из-за недостаточной толщины кольца подшипника;

Вто­рые дают натяг, недопустимый по прочности внутреннего кольца под­шипника.

Введение каких-либо специальных посадок с малыми натя­гами для подшипников качения экономически нецелесообразно. Поэто­му поступают так: на вал назначается стандартное поле допуска для переходной посадки, а поле допуска внутреннего кольца подшипника опускается симметрично вниз относительно нулевой линии. Следовательно, у внутренних колец подшипников допуск размера задается в минус, а не в плюс, как это принято у обычных основных отверстий. Такая комбинация полей допусков обеспечивает натяги, допустимые по прочности внутреннего кольца, и гарантирует неподвижность сое­динения.

Рисунок 5.1 – Пример посадок шариковых радиальных подшипников

Таким образом, основные (верхние) отклонения обоих присоединительных диаметров подшипников качения приняты равными нулю (рисунок 5.1) и обозначаются прописной и строчной буквами L и l, соответственно для внутреннего и наружного колец подшипника.

Выбор посадки подшипника на вал и в корпус производится в зависимости от класса точности подшипника (рисунок 5.1), вида нагружения колец подшипника, режима его рабо­ты, от величины и характера нагрузки, скорости вращения и других факторов.

В зависимости от конструкции и условий эксплуатации изделия, в котором смонтированы подшипники, кольца подшипников могут испытывать различные по характеру виды нагружения: местное, циркуляционное и колебательное (рисунок 5.2).

При местном нагружении кольцо воспринимает постоянную ради­альную нагрузку (например, натяжение приводного ремня, силу тя­жести конструкции) лишь ограниченным участком дорожки качения и передаёт её соответствующему ограниченному участку посадочной по­верхности вала или корпуса (рисунки 5.2 а и 5.2 б).

При циркуляционном нагружении кольцо воспринимает радиальную нагрузку последовательно всей окружностью дорожки качения и переда­ёт её также последовательно всей посадочной поверхности вала или корпуса (рисунки 5.2 а и 5.2 б).

а ) б ) в ) г )

Рисунок 5.2 – Виды нагружения колец подшипников

При колебательном нагружении кольцо воспринимает равнодействующую двух радиальных нагрузок (одна – постоянная по направле­нию, а другая – меньшая по величине, вращается) ограниченным участком дорожки качения и передаёт её соответствующему ограни­ченному участку посадочной поверхности вала или корпуса (рисунки 5.2 в и 5.2 г). Равнодействующая нагрузка в данном случае не совершает полного оборота, а колеблется между точками А и В.

В зависимости от вида нагружения колец радиальных подшипников установлены следующие поля допусков, образующих посадки (таблица 5.1).

Таблица 5.1 – Поля допусков валов и отверстий корпусов для установки радиальных подшипников

При вращающемся вале на внутреннее кольцо назначается непод­вижная, а на наружное кольцо подвижная посадки. При неподвижном вале наоборот. Подшипник монтируется с зазором по тому кольцу, которое испытывает местное нагружение. Это устраняет заклинивание шари­ков и позволяет кольцу под действием толчков и вибраций постепен­но поворачиваться по посадочной поверхности, что обеспечивает равномерный износ беговой дорожки и удлиняет срок службы подшипника.

Монтаж подшипника по посадке с натягом производится по кольцу, испыты­вающему циркуляционное нагружение, что исключает проскальзывание кольца по посадочной поверхности и устраняет возможность её исти­рания и развальцовывания.

Обозначение подшипниковых посадок имеет свои особенности. Как было показано ранее, для подшипников установлено специальное основное отклонение отверстия, не соответствующее основному отклонению по ГОСТ 25347-82. Оно обозначается прописной буквой L . С целью унификации основное отклонение наружного кольца подшипника обозначается строчной буквой l. Учитывая, что применение системы отверстия для соединения внутреннего кольца подшипника с валом и системы вала для соединения наружного кольца с корпусом является обязательным, принято на сборочных чертежах посадки ко­лец подшипников обозначать одним полем допуска.

На сборочных чер­тежах посадка подшипника обозначается полем допуска детали, со­прягающейся с его соответствующим кольцом, например, – по наружному кольцу, – по внутреннему кольцу. Если известен класс точности подшипника, например 6, то поля допусков присоединительных диаметров подшипника будут иметь следующие условные обозначения: для наружного диаметра – l6, внутреннего диаметра– L6, а размеры для приведённого примера соответственно и В этом случае посадки по присоединительным диаметрам подшипника допускается обозначать в виде традиционной дроби: по наружному диаметру – , по внутреннему диаметру–

Контрольные вопросы и задания

1 Какие особенности назначения посадок подшипников качения?

2 Какие существуют виды нагружения колец подшипников?

3 Как зависят посадки от вида нагружения колец подшипников?

4 Как указываются посадки подшипников качения на чертежах?

Допуски и посадки


Похожая информация.


15. КАЛИБРЫ

Калибры средства измерительного контроля, предназначенные для проверки соответствия действительных размеров, формы и расположения поверхностей деталей заданным требованиям.

Калибры применяют для контроля деталей в массовом и серийном производствах. Калибры бывают нормальные и предельные .

Нормальный калибр – однозначная мера, которая воспроизводит среднее значение (значение середины поля допуска) контролируемого размера. При использовании нормального калибра о годности детали судят по зазорам между поверхностями детали и калибра. Оценка зазора, следовательно, результаты контроля в значительной мере зависят от квалификации контролера и имеют субъективный характер.

Предельные калибры обеспечивают контроль по наибольшему и наименьшему предельным значениям параметров. Изготавливают предельные калибры для проверки размеров гладких цилиндрических и конических поверхностей, глубины и высоты уступов, параметров резьбовых и шлицевых поверхностей деталей. Изготавливают также калибры для контроля расположения поверхностей деталей, нормированных позиционными допусками, допусками соосности и др.

При контроле предельными калибрами деталь считается годной, если проходной калибр под действием силы тяжести проходит, а непроходной калибр не проходит через контролируемый элемент детали. Результаты контроля практически не зависят от квалификации оператора.

По конструкции калибры делятся на пробки и скобы . Для контроля отверстий используют калибры-пробки, для контроля валов – калибры-скобы.

По назначению калибры делятся на рабочие и контрольные.

Рабочие калибры предназначены для контроля деталей в процессе их изготовления. Такими калибрами пользуются рабочие и контролеры отделов технического контроля (ОТК) на предприятиях.

Комплект рабочих предельных калибров для контроля гладких цилиндрических поверхностей деталей включает:

    проходной калибр (ПР) , номинальный размер которого равен наибольшему предельному размеру вала или наименьшему предельному размеру отверстия;

    непроходной калибр (НЕ), номинальный размер которого равен наименьшему предельному размеру вала или наибольшему предельному размеру отверстия.

Проходной калибр контролирует предел максимума материала детали, значит, выявленный таким калибром брак будет исправимым (на детали остался избыток материала, который можно снять при дальнейшей обработке детали с помощью того же технологического процесса).

Непроходной калибр контролирует предел минимума материала детали, значит, выявленный таким калибром брак будет неисправимым (с детали снято слишком много материала, который нельзя вернуть с помощью того же технологического процесса).

Для всех калибров устанавливают допуски на изготовление рабочих поверхностей, а для проходного калибра, который при контроле детали изнашиваются более интенсивно, дополнительно устанавливают границу износа.

Контрольные калибры предназначены для контроля рабочих калибров-скоб. Для калибров-пробок контрольные калибры не изготавливают, поскольку наружные размеры достаточно просто проконтролировать универсальными средствами измерений – измерительными головками на стойках, гладкими или рычажными микрометрами и другими накладными приборами.

В комплект контрольных калибров входят три калибра, изготовленные в виде шайб:

    контрольный проходной калибр (К-ПР);

    контрольный непроходной калибр (К-НЕ);

    калибр для контроля износа проходного калибра (К-И).

Контрольные калибры изготавливают в виде плоских шайб с шириной, соответствующей ширине контролируемой скобы. Калибры К-ПР и К-НЕ – нормальные калибры, предназначенные для контроля соответствующих рабочих калибров-скоб при их изготовлении и приемке. Контрольный калибр К-И используют для проверки уровня изношенности рабочего проходного калибра как предельный непроходной калибр. Прохождение калибра К-И свидетельствует о переходе износа за допустимый предел, рабочий проходной калибр бракуют, после чего он подлежит ремонту или утилизации.

Необходимым условием конструирования калибров является соблюдение принципа подобия, или принципа Тейлора. Согласно этому принципу проходной калибр должен быть прототипом сопрягаемой детали с длиной, равной длине соединения, и обеспечивать комплексный контроль (размера, формы и при необходимости расположения поверхностей детали). Непроходной калибр должен обеспечивать контроль собственно размеров детали, значит, он должен иметь малую измерительную длину контактных поверхностей, чтобы контакт приближался к точечному.

В соответствии с принципом Тейлора проходной калибр для контроля отверстия должен быть валом с длиной, равной длине соединения («полная пробка»), а непроходной калибр для отверстия должен иметь сферические контактные поверхности («неполная пробка»). Фактически из технологических соображений принцип Тейлора частично нарушают, используя неполные пробки в качестве проходных калибров и полные пробки уменьшенной длины в качестве непроходных калибров.

Для контроля валов в полном соответствии с принципом Тейлора проходной калибр должен исполняться в виде кольца, а непроходной калибр в виде скобы. Реально в большинстве случаев применяют проходные и непроходные калибры в виде скоб.

Для построения схем расположения полей допусков необходимы номинальные размеры калибров, которые соответствуют предельным размерам контролируемой калибром поверхности отверстия или вала (рисунок 15.1).

Рисунок 15.1 – К определению номинальных размеров калибров

Расположение полей допусков калибров по ГОСТ 24853-81 зависит от номинального размера детали (различаются схемы для размеров до 180 мм и свыше 180 мм и для квалитетов 6,7,8 и от 9 до 17 ).

Стандартом установлены следующие нормы для калибров:

    Н – допуск на изготовление калибров для отверстия;

    Н s допуск на изготовление калибров со сферическими измерительными поверхностями (для отверстия);

    Н 1 допуск на изготовление калибров для вала;

    Н р допуск на изготовление контрольного калибра для скобы.

Износ проходных калибров ограничивают значениями:

    Y допустимый выход размера изношенного проходного калибра для отверстия за границу поля допуска изделия;

    Y 1 допустимый выход размера изношенного проходного калибра для вала за границу поля допуска изделия.

Для всех проходных калибров поля допусков смещены внутрь поля допуска детали на величину Z для калибров-пробок и величину Z 1 для калибров-скоб. Такое расположение поля допуска проходного калибра, подверженного износу, позволяет повысить его долговечность, хотя увеличивает риск забракования годных деталей новым калибром.

Схема расположения полей допусков калибров для контроля отверстия и вала показана на рисунке 15.2.

Калибры-пробки могут быть полные и «неполные». Полные пробки для цилиндрических отверстий имеют форму прямого кругового цилиндра, а неполные – форму вырезанной из прямого кругового цилиндра полосы с диаметрально противоположными рабочими поверхностями. Такие неполные пробки изготавливают из листового материала. Предельный случай «неполной» пробки – стержень со сферическими рабочими поверхностями – часто используют для контроля больших отверстий, особенно размером порядка нескольких метров. В технической литературе для подобных конструкций раньше применяли наименование «штихмасс». Иногда основную часть такого калибра выполняют из дерева, а наконечники для повышения износостойкости делают металлические. В неполных пробках иногда предусматривают возможность изменения размеров за счет тонкого перемещения наконечников, такие калибры-пробки называют регулируемыми в отличие от «жестких пробок» с фиксированными размерами.

Предельные калибры-пробки бывают однопредельные (проходные или непроходные) или двухпредельные (объединенные на одной рукоятке проходная и непроходная пробки). В зависимости от расположения двух пробок на рукоятке различают односторонние и двухсторонние калибры. Односторонние пробки дают некоторый выигрыш в производительности контроля, но требуют усложнения конструкции со всеми вытекающими отсюда недостатками.

Калибры-скобы как и калибры-пробки могут быть однопредельные и двухпредельные, причем двухпредельные скобы могут выполняться как односторонние или двухсторонние. Все калибры-скобы можно отнести к «неполным» калибрам, поскольку полным калибром для контроля вала является калибр-кольцо. Калибры в форме колец используют сравнительно редко (например, резьбовые калибры-кольца), поскольку технология контроля существенно усложняется, а проконтролировать калибром-кольцом размеры шеек установленного в центрах вала на технологическом оборудовании в принципе невозможно.

Калибры-скобы изготавливают из листового материала или из специальных заготовок, полученных литьем или штамповкой. Скобы выполняют как«жесткие» с фиксированными размерами или регулируемые. У регулируемых скоб для повышения износостойкости часто применяют напайки из твердого сплава на регулируемые цилиндрические контактные элементы.

Контрольные калибры предназначены для контроля калибров-скоб, поэтому они должны быть «валами». Однако поскольку они предназначены для контроля скоб со сравнительно узкими рабочими поверхностями, эти калибры изготавливают не в виде валов значительной длины, а в форме плоских шайб.

При контроле калибрами нельзя применять силу, особенно при использовании калибров-скоб, поскольку калибр в некоторых случаях можно «затолкать» на вал, несмотря на сопротивление деталей. В таком случае скоба «раскрывается» несмотря на относительно высокую жесткость конструкции и возвращается в исходное состояние после снятия нагрузки. Основное правило, которое позволяет избежать недопустимых деформаций, – контроль прохождения/непрохождения калибра под действием собственного веса. Это означает, что пробку надо опускать в отверстие при вертикальном положении его оси, а скобу следует опускать сверху при горизонтальном расположении оси вала. Для изменения контрольного сечения вала его поворачивают вокруг горизонтальной оси, а направление перемещения скобы остается вертикальным.

На чертежах рабочих калибров в соответствии с ГОСТ 2015 указывают:

а) исполнительные размеры;

б) допуски формы, а при необходимости и расположения рабочих поверхностей калибров. Числовые значения допусков выбирают, исходя из уровней относительной геометрической точности (предпочтительно по нормальному уровню А). Полученное значение допуска округляют до ближайшего по ГОСТ 24643;

в) шероховатость поверхностей (в первую очередь рабочих). Числовое значение высотного параметра шероховатости следует согласовать с минимальным допуском макрогеометрии; оно не должно превышать регламентируемое ГОСТ 2015;

г) другие размеры, необходимые для изготовления;

д) твердость рабочих поверхностей, принятая по ГОСТ 2015;

е) маркировку калибров.

Исполнительным называется размер калибра, по которому изготавливается калибр. При определении исполнительного размера пользуются правилом: за «новый» номинальный размер принимают предел максимума материала калибра с расположением поля допуска «в тело» детали. На чертежах рабочих калибров-пробок и контрольных калибров обозначают наибольший размер с отрицательным отклонением, равным ширине поля допуска, для калибров-скоб – наименьший размер с положительным отклонением.

При маркировке на поверхность калибра (или его ручку для калибра-пробки) наносят:

    номинальный размер поверхности, для контроля которой предназначен калибр;

    буквенное обозначение поля допуска контролируемой поверхности;

    числовые значения предельных отклонений в соответствии с полем допуска контролируемой поверхности (значения в миллиметрах);

    тип калибра (ПР, НЕ, К-ПР и т.д.);

    товарный знак завода-изготовителя.

Калибр-пробка гладкая – это устройство для контроля размеров цилиндрических отверстий, применяется в серийном, крупносерийном и массовом производстве. При проверке деталь считается годной, если пробка проходит стороной и не проходит непроходным краем через контролируемое отверстие. Усилие, прилагаемое к калибру, должно быть примерно пропорционально его массе.

Специальное средство контроля одного или нескольких размеров, а также формы и взаимного расположения обрабатываемых поверхностей называется калибром. Их главное отличие от универсальных измерительных инструментов состоит в том, что калибры не имеют шкалы, так как предназначены для контроля одного параметра или их комплекса. Например, с помощью штангенциркуля или микрометра можно измерить фактический диаметр вала и сравнить с указанным на чертеже. Именно так и поступают при единичном или мелкосерийном производстве.

Но в обстоятельствах серийного и массового производства это экономически нецелесообразно, потому что при измерении универсальными средствами, когда необходима точность порядка сотых и тысячных долей миллиметра, результаты контроля зависят от квалификации работника. Высокое мастерство подразумевает соответствующую зарплату, увеличиваются затраты времени на процесс контроля. Эти факторы увеличивают стоимость продукции.

Достоинства калибров:

  • простота применения позволяет использовать рабочих и контролеров невысокой квалификации;
  • быстрота контроля;
  • возможность одновременной проверки нескольких параметров.

Недостатки:

  • ограниченная применимость;
  • невозможность определить числовые отклонения размеров.

Внедрение автоматизации и компьютеров постепенно сокращает применение этих средств контроля в машиностроении.

Виды приборов

Существуют следующие виды калибров:

Представляют собой стержень, на обоих концах которого расположены цилиндрические элементы. Один из них имеет наибольший предельный размер отверстия и называется непроходной пробкой (НЕ), а второй наименьший и зовется проходной (ПР). Непроходная пробка заметно короче проходной, благодаря чему рабочий или контролер быстро и правильно определяет пригодность деталей.

Гладкие калибры-пробки изготовляют составными, ручки стальные или пластмассовые, в которых крепятся вставки с коническими хвостовиками или цилиндрические насадки. Для проверки отверстий в интервале от 2 до 50 мм изготавливаются конические хвостовики, а для отверстий в границах 30-100 мм – цилиндрические насадки. Если вставка только с одной стороны ручки, то такие калибры-пробки называются односторонними.

Применяются для контроля диаметров валов, по конструкции бывают односторонние и двухсторонние. так же, как и в случае с пробками, скоба ПР должна проходить, а скоба НЕ должна не проходить по валу. Иначе вал считается негодным, причем брак будет исправимым, только в том случае, если для достижения нужного результата потребуется снять лишний металл.

Применяя скобы, их ни при каких обстоятельствах нельзя силой заталкивать на вал, так как скоба может «раскрыться» и увеличить расстояние между измерительными поверхностями по причине податливости, обусловленной ее конструкцией. Чтобы не допустить этого, следует надевать скобу на горизонтально расположенный вал только под действием ее собственного веса. При этом вал еще и вращают, что позволяет заодно проконтролировать отклонения от круглого профиля в поперечном сечении.

Скобы бывают для проверки только одного размера (их называют жесткими) и регулируемые, которые позволяют контролировать определенный диапазон диаметров валов. Регулируемые части изготавливают из твердых сплавов, что способствует существенному увеличению их срока службы.

Это наборы стальных пластин толщиной от 0,02 до 1 мм и длиной 100 или 200 мм. Их используют для контроля величины зазора между поверхностями при сборке различных механизмов. При этом в зазор вставляют один или несколько щупов в наборе, чтобы подобрать нужную величину.

Пользуясь щупами, важно соблюдать определенные правила:

Служат для контроля конических поверхностей, например, конусов инструментов. С помощью калибра-кольца проверяется годность наружных поверхностей, а пробкой – пригодность внутренних. Деталь считается годной, если ее торец находится в зоне между рисками или между плоскостями уступа. Это расстояние равно допуску.

Калибры для проверки расположения поверхностей

Могут быть самых разных конструкций. С их помощью контролируют:

Измерительные элементы этого вида калибров располагаются таким образом, чтобы воспроизвести конфигурацию поверхностей сопрягаемых деталей.

Применяют для комплексной проверки среднего диаметра, угла профиля, а также наибольшего внутреннего диаметра наружной резьбы или наименьшего внешнего диаметра внутренней резьбы. С помощью этих устройств проверяют метрические, дюймовые, трапецеидальные, упорные и круглые резьбы диаметром от 1 до 600 мм.

Контрольный комплект состоит из рабочих проходного (ПР) и непроходного (НЕ) калибров , а также из контрольных, которые служат для проверки рабочих калибров-колец и пробок.

Проходные калибры должны свободно свинчиваться с контролируемой резьбой, а непроходные не должны свинчиваться с ней. Допускается навинчивание непроходных калибров до 2 оборотов, при этом количество оборотов определяют при развинчивании калибра и контролируемого изделия. Если резьба проверяемой детали короткая (менее 3 витков), то навинчивание непроходного калибра не допускается.

Резьбовой калибр ПР имеет длину порядка 80% от длины свинчивания, то есть длины соприкосновения резьбы болта и гайки, измеренной вдоль их оси.

У непроходного - длина не меньше 3 витков.

Требования к изготовлению и эксплуатации

Ко всем калибрам независимо от их назначения и вида предъявляются следующие условия:

Так как калибры – это дорогостоящий и ответственный инструмент, то рекомендуется строго соблюдать определенные правила при работе с ними:

  • ни в коем случае не прикладывать к калибру силу или подвергать ударам;
  • контролируемые поверхности должны быть чистыми, сухими и без заусенцев;
  • при проверке детали вращать ее запрещено;
  • нельзя проводить контроль горячих или теплых изделий, так как при этом изменяются их размеры и быстрее изнашиваются калибры;
  • строго соблюдать сроки контрольных поверок.

При хранении рабочие поверхности калибров не должны контактировать с металлическими предметами.

Калибрами называются бесшкальные измерительные инструменты, предназначенные для проверки размеров, формы и взаимного расположения поверхностей деталей. Калибры относятся к одномерным инструментам, так как измерительные части калибров в процессе измерения не меняются.

Калибры подразделяются на две группы: нормальные и предельные .

Нормальные калибры изготовляются по номинальному размеру проверяемой детали и имеют измерительную часть, равную среднедопускаемому размеру измеряемой детали. Нормальный калибр должен входить в деталь с большей или меньшей плотностью.

Предельные калибры имеют размеры номинально равные предельным размерам измеряемой детали. Одна из сторон калибра соответствует наибольшему, а другая - наименьшему заданному предельному размеру. При измерении предельными калибрами проходная сторона должна входить в отверстие или надеваться на вал, а вторая сторона - непроходная - не должна входить в отверстие или надеваться на вал. Непроходная сторона калибра отличается от проходной стороны кольцевой выточкой на ручке или же меньшей длиной измерительной части. Непроходная сторона калибра делается укороченной, потому что она обычно не входит в проверяемое отверстие. С помощью предельных калибров определяют, вышли или не вышли действительные размеры деталей за установленные пределы.

В зависимости от проверяемых элементов деталей калибры подразделяются следующим образом:

1) для проверки отверстий;

2) для проверки валов;

3) для проверки резьб;

4) для проверки конусных отверстий и др.

По назначению калибры делятся на рабочие и приемные .

Рабочими калибрами пользуются при изготовлении изделий. Их применяют для проверки деталей на рабочем месте.

Калибры приемные предназначены для контролеров, которые с помощью их проверяют детали на контрольных местах или в отделах технического контроля (ОТК).

В соответствии с ОСТ 1201, 1219 и 1220 калибры имеют следующие обозначения:

Р-ПР (или ПР) - проходная сторона рабочего калибра;

Р-НЕ (или НЕ) - непроходная сторона рабочего калибра;

П-ПР - проходная сторона приемного калибра;

П-НЕ - непроходная сторона приемного калибра.

На калибры наносится следующая маркировка:

а) номинальный размер изделия, для которого предназначен калибр;

б) предельные отклонения изделия (посадка, класс точности);

в) назначение калибра (ПР - проходная и НЕ - непреходная сторона);

г) товарный знак завода-изготовителя.

На односторонних двухпредельных калибрах обозначения ПР и НЕ не ставятся.

Конструкций калибров для контроля цилиндрических поверхностей (вал и отверстие) очень много и самые разнообразные.

Рис. 58. Нормальные калибры :

а - калибр-пробка, б - кольцо, в - скоба

На рис. 58 показаны нормальные калибры: кольцо, пробка и скоба.

Кольцом и скобой проверяют диаметр вала, а пробкой - диаметр отверстия. Для измерения валов пользуются главным образом скобами.

Кольца позволяют более точно проверить вал, так как они охватывают всю его поверхность. Однако изготовление колец дорого, и поэтому их применение ограничено. Кроме того, кольцами нельзя измерять шейки в середине валов, а также валы, закрепленные в центрах. Из скоб наиболее распространены предельные односторонние скобы (рис. 59).

Рис. 59. Предельный калибр-скоба

Наиболее удобны и широко применяются регулируемые скобы. Они изготовляются с одной неподвижной губкой и двумя вставками (ПР - проходной и НЕ - непроходной). Вставки устанавливаются на определенный размер в пределах регулирования от 3 до 8 мм. В корпусе 1 этой скобы имеются два гнезда, в которые помещаются измерительные вставки 2, закрепляемые винтами 3. При установке скобы вставки перемещают на требуемый размер и фиксируют установочными винтами 4. Регулируемые скобы имеют то преимущество, что в случае износа размер скобы можно восстановить перемещением вставок. Регулируемыми скобами можно измерять валы различных диаметров (в пределах регулирования скобы).

Калибрами называются бесшкальные меры, которые предназначены для контроля размеров, формы и расположения поверхностей деталей. По методу контроля калибры делят на нормальные и предельные. Нормальные калибры копируют размеры и форму изделий.

Предельные калибры воспроизводят размеры, соответствующие верхней и нижней границам допуска на изделие. При контроле используют проходной и непроходной предельные калибры. По конструкции предельные калибры делят на нерегулируемые и регулируемые. Регулируемые калибры позволяют компенсировать их износ или устанавливать калибр на другой размер; предельные калибры могут быть однопредельными и двухпредельными, объединяющими проходной и непроходной калибры. Оба предельных калибра могут быть расположены с одной стороны. В этом случае предельные калибры называют односторонними.

Комплексные калибры (рис. 1.26) предназначены для контроля нескольких размеров изделия (например, деталей шлицевого соединения).

Дифференциальные калибры (рис. 1.27) позволяют контролировать только один размер (например, калибр для контроля ширины шпоночного паза).

По назначению различают рабочие калибры для контроля изделий при изготовлении; калибры контролера (для проверки изделий работниками службы технического контроля); приемные калибры для контроля изделий заказчиком; контрольные калибры для проверки размеров рабочих и приемных калибров. В качестве калибра контролера используют частично изношенные проходные и неизношенные непроходные калибры.

На калибры наносят маркировку, в которой указывают параметры контролируемых деталей: номинальный размер, обозначение поля допуска и предельные отклонения.

Нормальные калибр-шаблоны (рис. 1.28) применяют для контроля размеров и формы изделий сложного профиля. Шаблоны 1 могут прикладываться к проверяемому профилю изделия 2 (рис. 1.28, а) или накладываться на изделие 2 с совмещением профилей (рис. 1.28, б). В первом случае отклонение профиля изделия от профиля шаблона определяют на «краску», если отклонение менее 3 мкм, или на просвет, если отклонение больше 3 мкм. При проверке на «краску» поверхность шаблона покрывают тонким слоем краски и прикладывают его к изделию. По отпечатку краски на поверхности проверяемого изделия судят о плотности прилегания шаблона.

При контроле изделия путем совмещения профилей отклонение профиля определяют при помощи индикатора (см. рис. 1.28, б). Индикатор применяют в тех случаях, когда величина отклонения составляет не более 5 мкм в большую или меньшую сторону, если эта величина больше, то отклонение оценивают визуально.

Для определения радиусов закруглений от 1 до 25 мм применяют радиусные шаблоны (рис. 1.29), которые представляют собой стальные пластины с профилем дуги окружности соответствующего радиуса. Они комплектуются в наборы, состоящие из пластин с выпуклыми 1 или вогнутыми 3 профилями. Пластины собирают в обойму 2. При контроле радиусные шаблоны, как правило, прикладывают к профилю изделия. Если в сопряжении нет зазора, то радиусы изделия и шаблона равны.

Щупы

Достаточно распространенным инструментом являются щупы, которые представляют собой набор пластин определенной толщины (рис. 1.30). Щупы являются нормальными калибрами при проверке зазоров между поверхностями, они выпускаются с номинальными размерами 0,02… 1,0 мм, с градацией через 0,01 и 0,05 мм. По длине различают щупы двух исполнений: 200 и 100 мм. Щупы длиной 100 мм изготавливают как в виде отдельных пластин, так и в виде наборов, а при длине 200 мм — только в виде отдельных пластин. При измерении зазора в него вводят щуп или набор щупов. При измерении щуп должен перемещаться в зазоре с небольшим усилием, т. е. он не должен проваливаться в зазор и перемещаться свободно.

При измерении зазоров щупом следует выполнять ряд правил:

Перед измерением зазора убедиться в плавности перемещения пластин щупа;

Если перемещение пластин в зазоре затруднено, то их следует слегка смазать;

Величину зазора определять по суммарной величине набора пластин щупа, полностью вошедших в зазор по всей его длине;

При измерении величины зазора не прикладывать к щупу больших усилий во избежание поломки пластин или их деформирования.

Калибр-скобы

Наиболее распространенными предельными калибрами являются калибр-скобы для контроля гладких валов и калибр-пробки для контроля гладких отверстий.

Калибр-скобы имеют различные конструкции (рис. 1.31). Их изготавливают одно- и двусторонними из листового материала (рис. 1.31, с, б). Такие скобы применяют для валов диаметром от 1 до 500 мм. Для контроля валов диаметром от 3 до 100 мм применяют скобы, изготовленные из штампованных заготовок. Такие скобы обладают повышенной износостойкостью и долговечностью.

Штампованные скобы изготавливают, как правило, односторонними (рис. 1.31, в), а также со сменными измерительными губками (рис. 1.31, г).

Повышенная долговечность этих скоб по сравнению со скобами из листовых заготовок объясняется их повышенной жесткостью и более широкой измерительной рабочей поверхностью.

Калибр-пробки

Калибр-пробки для контроля отверстий небольшого диаметра (1 …3 мм) изготавливают двусторонними со вставками из калиброванной проволоки (рис. 1.32, а).

Двусторонние калибр-пробки , имеющие вставки с коническими хвостовиками (рис. 1.32, б), применяют для контроля отверстий диаметром от 3 до 50 мм. Длина проходного калибра у этих пробок больше, чем длина непроходного. Для этих же размеров иногда применяют односторонние пробки, у которых проходной и непроходной калибр расположены по одну сторону рукоятки, однако такие пробки сложны в изготовлении и не позволяют контролировать неглубокие глухие и длинные отверстия, поэтому они используются редко.

Для контроля отверстий диаметром от 50 до 100 мм применяют двусторонние пробки с насадками (рис. 1.32, в), имеющие полный профиль. Пользование такими калибрами затруднительно из-за их большой массы, поэтому при контроле отверстий большого диаметра чаще используют пробки с неполными профилями. Калибр-пробки с неполным профилем изготавливают двусторонними из листовых заготовок, их применяют для контроля отверстий с размерами от 50 до 250 мм. Калибр-пробки с неполным профилем могут изготавливаться и односторонними.

Контроль отверстий диаметром от 250 до 1000 мм производят предельными нутромерами или штихмассами. У нутромеров измерительные поверхности выполняют цилиндрическими, а у штихмассов — сферическими. Штихмассы и нутромеры применяют в виде комплектов, состоящих из двух калибров — проходного и непроходного.