Метеорологические элементы и явления погоды, определяющие условия полета метеорологические элементы. Методы метеорологических наблюдений Какие метеорологические элементы ее характеризуют

Состояние атмосферы и процессы, происходящие в ней, характеризуются рядом метеорологических элементов: давлением, температурой, видимостью, влажностью, облаками, осадками и ветром.

Атмосферное давление измеряется в миллиметрах ртутного столба или в миллибарах(1 мм рт. ст= 1,3332 мб). За нормальное давление принимают атмосферное давление, равное760 мм рт ст., что соответствует1013,25 мб. Нормальное давление близко к среднему давлению на уровне моря. Давление непрерывно изменяется как у поверхности Земли, так и на высоте. Изменение давления с высотой можно характеризовать величиной барометрической ступени (высота, на которую надо подняться или опуститься, чтобы давление изменилось на 1 мм рт ст или на 1 мб)

Величина барометрической ступени определяется по формуле:

где t - температура,

Р - давление.

С высотой барометрическая ступень возрастает, так как давление уменьшается; в теплом воздухе уменьшение давления с высотой происходит медленнее, чем в холодном.

Данные об атмосферном давлении, нанесенные на синоптические карты, приведены к уровню моря. Для обеспечения посадки самолетов, на борт экипажам передаются значения атмосферного давления (в мм рт. ст.) на уровне ВПП. Давление учитывается при определении безопасной высоты полета, а также при посадке и выборе эшелонов.

Температура воздуха характеризует тепловое состояние атмосферы. Температура измеряется в градусах. Изменение температуры зависит от количества тепла, поступающего от Солнца на данной географической широте, характера подстилающей поверхности и атмосферной циркуляции.

В РФ и большинстве других стран мира принята стоградусная шкала. За основные (реперные) точки в этой шкале приняты:0°С - точка плавления льда и100°С -точка кипения воды при нормальном давлении (760 мм рт. ст.). Промежуток между этими точками разбит на 100 равных частей.1/ 100 этого промежутка носит название «один градус Цельсия» - 1° С.

Видимость. Под дальностью горизонтальной видимости у Земли, определяемой метеорологами, понимается то расстояние, на котором еще можно обнаружить предмет (ориентир) по форме, цвету, яркости. Дальность видимости измеряется в метрах или километрах.

Видимость реальных объектов, определяемая с самолета, называется полетной видимостью. Она подразделяется на горизонтальную, вертикальную и наклонную.

Горизонтальная полетная видимость представляет собой видимость объектов в воздухе, находящихся примерно на уровне полета самолета.

Be ртикальная полетная видимость определяется как видимость объектов, расположенных на земной поверхности под углами, близкими к 90°.

Под наклонной полетной видимостью реальных объектов понимается предельное расстояние с высотыН , на котором виден данный объект на окружающем фоне под различными углами.

Частным случаем наклонной полетной видимости является видимость при заходе на посадку, когда объектом обнаружения является начало взлетно-посадочной полосы. При наличии у Земли густой дымки, тумана, метели (поземки) за значение видимости при заходе на посадку принимается горизонтальная видимость у Земли в районе ВПП.

Полетная наклонная видимость реальных объектов (в том числе и посадочная) зависит от многих факторов, среди которых основными являются метеорологические. Наибольшее значение из метеорологических факторов имеет прозрачность атмосферы по наклону (наклонная метеорологическая видимость), которая в свою очередь зависит от высоты и структуры нижнего основания облаков, вертикальной мощности подоблачной дымки и вертикального градиента ее оптической плотности, а также от горизонтальной видимости у Земли.

При отсутствии низкой облачности, приземных дымок и других явлений прозрачность нижнего слоя атмосферы бывает достаточно высокой и в первом приближении можно считать, что она не изменяется с высотой. При этом значение наклонной видимости примерно равно горизонтальной видимости у Земли.

При наличии низкой облачности (слоистых форм) под ней, как правило, наблюдается подоблачная дымка. Толщина слоя подоблачной дымки довольно изменчива и может колебаться от нескольких десятков метров до 100-150 м. Наличие дымки приводит к тому, что наклонная метеорологическая видимость в подоблачном слое значительно ухудшается, и она, как правило, бывает меньше горизонтальной видимости у Земли. В связи с этим при определении наклонной полетной видимости реальных объектов при наличии низких облаков слоистых форм решающую роль играет оценка наклонной метеорологической видимости.

Влажность воздуха – содержание водяного пара в воздухе, выраженное в абсолютных или относительных единицах.


Абсолютная влажность - это количество водяного пара в граммах на 1 м 3 воздуха.

Удельная влажность - количество водяного пара в граммах на 1 кг влажного воздуха.

Относительная влажность - отношение количества содержащегося в воздухе водяного пара к тому количеству, которое требуется для насыщения воздуха при данной температуре, выраженное в процентах. Из величины относительной влажности можно определить, насколько данное состояние влажности близко к насыщению.

Точка росы - температура, при которой воздух достиг бы состояния насыщения при данном влагосодержании и неизменном давлении.

Разность между температурой воздуха и точкой росы называется дефицитом точки росы. Точка росы равна температуре воздуха в том случае, если его относительная влажность равна 100%. При этих условиях происходит конденсация водяного пара и образование облаков и туманов.

Облака – это скопление взвешенных в атмосфере капель воды, или ледяных кристаллов, или смеси тех и других, возникших в результате конденсации водяного пара.

По внешнему виду подразделяются на три основные формы: кучевообразные, слоистообразные и волнистообразные (волнистые).

К кучевообразным облакам нижнего яруса относятся кучевые, мощные кучевые и кучево-дождевые облака.

Кучевые облака - облака белого цвета с плоским основанием и куполообразной вершиной, осадков не дают. Высота нижней границы чаще всего колеблется в пределах1000-1500 м , вертикальная мощность достигает1000-2000 м .

Образование кучевых облаков говорит о неустойчивом состоянии воздушной массы, т. е. о наличии в ней вертикальных потоков. Поэтому полет в облаках, под облаками и между ними неспокоен и сопровождается слабой болтанкой. Выше кучевых облаков полет происходит более спокойно. Видимость в них колеблется в пределах 35-45 м .

Мощные кучевые облака сильно развиваются по вертикали. Основание облаков плоское и опускается до высоты1000-600 м . Верхняя граница достигает обычно высоты4-5 км. Внутри облаков наблюдаются сильные восходящие потоки(до 10-15 м/с). Поэтому входить в мощные кучевые облака запрещается.

Кучево-дождевые облака являются наиболее опасными облаками с точки зрения условий полета в них. Образование их обычно сопровождается грозовыми разрядами и ливневыми осадками. Вертикальная мощность достигает7-9 км , а нижнее основание часто лежит на высоте300-600 м и имеет относительно небольшую площадь. Особенно быстро их развитие происходит летом в резко пересеченной местности (над горами).

В период перехода мощного кучевого облака в кучево-дождевое, когда происходит бурный процесс его развития в вертикальном направлении, в нем наблюдаются наиболее интенсивные восходящие и нисходящие потоки воздуха. При этом в верхней части облака господствуют интенсивные восходящие движения, а нисходящие - слабы. У основания и средней части облака наряду с сильными восходящими движениями наблюдаются значительные нисходящие движения холодного воздуха, опускающегося из облака вместе с осадками.

В этой стадии развития кучево-дождевого облака экипаж может встретить рядом располагающиеся и нисходящие потоки, достигающие скорости 20-30 м/с. Наиболее сильная турбулентность наблюдается в средней части облака на высоте3000-6000 м .

Кучево-дождевые облака, образующиеся на холодных фронтах, обычно располагаются цепью, простираясь вдоль фронта на сотни километров в длину и десятки километров в глубину. В холодное время года их вертикальная мощность составляет3-5 км , а в теплое время их вершины обычно достигают нижней границы стратосферы (11-12 км). Средняя скорость перемещения составляет40-80 км/ч , а иногда может увеличиться до100 км/ч и более.

Интенсивная грозовая деятельность, сильная болтанка, тяжелые виды обледенения (при соответствующих температурах), ливневые осадки, нередко сопровождающиеся градом, и резкое ухудшение видимости почти полностью исключают возможность выполнения полета в кучево-дождевых облаках. Поэтому полеты в кучево-дождевых (грозовых) облаках и под нимизапрещены .

При полетах в зонах с грозовой деятельностью усиливаются радиопомехи. Грозовые разряды отмечаются в виде коротких ударов и треска в наушниках, а также по рысканию стрелки радиокомпаса. В полете грозовые очаги хорошо обнаруживаются самолетными радиолокационными станциями. На индикаторе кругового обзора местные, внутримассовые грозы видны в виде отдельных, разбросанных по экрану пятен, а фронтальные грозы - в виде цепочки пятен с выпуклостью, обращенной в сторону движения фронта. Визуально приближение грозовых очагов можно определить по вспыхивающим зарницам, особенно в ночное время.

При наличии на маршруте отдельных грозовых очагов рекомендуется обходить их на удалении не менее 10 км , а при полете над кучево-дождевыми облаками иметь запас высотыне менее 1000 м над их вершиной.

Слоистообразные облака являются облаками фронтальными (связаны с теплыми и медленно движущимися холодными фронтами), образуются над фронтальной поверхностью и совпадают с ней своим нижним краем.


Система слоистообразных облаков состоит из слоисто-дождевых (нижний ярус), высокослоистых (средний ярус), перисто-слоистых и перистых облаков (верхний ярус) и покрывает сплошной пеленой площади в сотни тысяч квадратных километров Вблизи линии фронта нижнее основание слоисто-дождевых облаков обычно располагается на высотах300-600 м, верхняя граница- на высоте4-6 км , а иногда и более(до 10-12 км). Горизонтальная видимость в них колеблется в пределах15-25м .

Полет в слоисто-дождевых облаках на высотах, где кинетический нагрев не обеспечивает повышения температуры выше 0°, связан с возможностью сильного обледенения в виде прозрачного или матового льда. В зимнее время в слоисто-дождевых облаках опасность сильного обледенения наблюдается на всех высотах. Нередко в переходное время года из слоисто-дождевых и высоко-слоистых облаков выпадает переохлажденный дождь. Полет под облаками в зоне переохлажденного дождя опасен из-за сильного обледенения самолета.

Особенно опасен полет под высокослоистыми и слоисто-дождевыми облаками навстречу фронту для экипажей, не овладевших полетами в сложных метеорологических условиях. Вблизи фронта слоисто-дождевая облачность нередко сливается с разорванно-слоистой, нижняя граница которой на расстоянии 100-150 км от фронта может опускаться до самой земли.

В холодные и переходные сезоны года наиболее часто встречаются волнистообразные (волнистые) облака.

Образование волнистых облаков связано с наличием слоев инверсий в атмосфере, поверхность которых имеет волнистый характер. Волнистые облака могут возникать под слоем инверсии и над ним. В нижнем ярусе под слоем инверсии образуются слоистые и слоисто-кучевые просвечивающие облака. Подынверсионные облака, как правило, внутримассовые и обычно образуются в антициклонах. Нередко они возникают также в теплых секторах циклона.

Слоисто-кучевые просвечивающие облака наблюдаются в виде тонкого слоя волнистых облаков. Очень часто между отдельными волнами можно видеть голубое небо, более светлые места. Высота этих облаков нередко составляет600-1000 м . Так как слои инверсии часто располагаются одновременно на различных высотах, то и слоисто-кучевые просвечивающие облака распределяются по высотам обычно несколькими слоями. Толщина отдельных слоев чаще всего не превышает200-300 м . Осадки не выпадают, обледенение отсутствует. Характерными оптическими явлениями для них, особенно в холодное время года, являются венцы и глория.

Видимость в облаках достигает 70-90 м.

Слоистые облака возникают в подынверсионном слое, когда воздух в нем близок к насыщению и уровень конденсации лежит очень низко.

Образовавшийся под инверсией слой облаков снизу имеет вид серого достаточно равномерного облачного покрова. Слоистое облако не имеет резкой нижней границы, что затрудняет определение момента входа в облачность. Верхняя часть слоистых облаков наиболее плотная.

При полете над слоистыми облаками верхний край их представляется волнистым, но достаточно спокойным.

Высота слоистых облаков обычно колеблется в пределах 100-300 м , толщина -от 200 до 600 м . Наименьшая толщина и высота слоистых облаков наблюдается в том случае, когда они возникают в результате поднятия туманов.

Эти облака создают большую трудность, а иногда и опасную обстановку на последнем, наиболее ответственном этапе полета - заходе на посадку, так как нижнее основание этих облаков близко располагается к земной поверхности и иногда их высота оказывается ниже установленного минимума погоды.

Слоисто-кучевые плотные облака образуются над слоем инверсии на слабо выраженных фронтах и фронтах окклюзии. Они имеют вид сплошного сомкнутого покрова достаточно плотных валов или глыб. Высота нижней границы облаков обычно составляет300-600 м , а вертикальная мощность600-1000 м. При полете в этих облаках следует учитывать, что их вертикальное распределение характеризуется разделением на несколько слоев, расположенных друг над другом. Расстояние между слоями колеблется в пределах100-1100 м, а чаще всего составляетоколо 300 м . Прослойки клинообразные и очень неустойчивы по времени. Горизонтальная видимость в слоисто-кучевых плотных облаках составляет35-45 м. Они могут давать слабые и умеренные обложные осадки, особенно в холодное время года. При горизонтальном полете в них наблюдается слабое обледенение.

В полете о высоте нижнего края слоистой и слоисто-кучевой облачности можно судить по виду ее верхней поверхности. Когда эти облака выглядят сверху ровными и спокойными, нижняя граница облаков в этом случае может располагаться на небольшой высоте от Земли. Если поверхность облака выглядит достаточно бугристой и на ней появляются «пенящиеся» белые барашки или вершины кучевообразных облаков, то это говорит о значительной турбулентности подоблачного слоя; в этом случае высота нижней границы облаков обычно более 300 м . Появление на верхней поверхности облачности глории говорит о том, что этот слой облаков имеет небольшую толщину.

Осадки - водяные капли или ледяные кристаллы, выпадающие из облаков на поверхность земли. По характеру выпадения осадки подразделяются на обложные, выпадающие из слоисто-дождевых и высокослоистых облаков в виде капель дождя средней величины или в виде снежинок; ливневые, выпадающие из кучево-дождевых облаков в виде крупных капель дождя, хлопьев снега или града; моросящие, выпадающие из слоистых и слоисто-кучевых облаков в виде очень мелких капель дождя.

Полет в зоне осадков затруднен вследствие резкого ухудшения видимости, снижения высоты облаков, болтанки, обледенения в переохлажденном дожде и мороси, возможного повреждения поверхности самолета (вертолета) при выпадении града

Ветер - движение воздуха по отношению к земной поверхности. Он характеризуется скоростью (в м/с или км/ч) и направлением (в град). Направление ветра, принятое в метеорологии (откуда дует), отличается от аэронавигационного (куда дует) на 180°.

Непосредственной причиной возникновения ветра является неравномерное распределение давления по горизонтали. Как только создается разность атмосферного давления в горизонтальном направлении, сейчас же возникает сила барического градиента, под действием которой частицы воздуха начинают перемещаться с ускорением из области более высокого в область более низкого давления. Эта сила всегда направлена перпендикулярно по нормали к изобаре в сторону низкого давления.

Наиболее сильные ветры отмечаются в области струйных течений; скорость ветра в них превышает 100 км/ч . Ось струйного течения с максимальной скоростью ветра чаще всего располагается на1000- 2000 м ниже тропопаузы, т. е. переходного слоя, отделяющего тропосферу от стратосферы. Толщина тропосферы колеблется от нескольких сот метров до1-2 км . В этом слое падение температуры с высотой замедляется.

Преобладающим направлением струйных течений является западное. Над РФ струйные течения чаще всего наблюдаются над Дальним Востоком, центральной частью европейской территории, Уралом, Западной Сибирью и Средней Азией. Скорость струйного течения вблизи оси достигает 300 км/ч.

Местные ветры - воздушные течения, возникающие и приобретающие типичные свойства под влиянием местных физико-географических и термических условий. Над территорией РФ наблюдаются следующие основные типы местных ветров.

Бризы - ветры с суточной периодичностью, возникающие по берегам морей и больших озер, а также на некоторых больших реках. Дневной (морской) бриз направлен с моря на сушу, ночной (береговой) - с суши на море. Морской бриз начинаетсяс 10-11 часов утра и распространяется в глубь континента на20-40 км. Его вертикальная мощность достигает в среднем1000 м , Береговой бриз начинается после захода Солнца, распространяется в глубь моря на8-10 км , достигая высоты около250 м .

Горно-долинные ветры - местная циркуляция воздуха между горным хребтом и долиной с суточным периодом: днем-из долины вверх по нагретому, склону, ночью - со склонов горы в долину. Горно-долинные ветры наблюдаются во всех горных системах и особенно хорошо выражены в ясную погоду летом.

Бора - сильный холодный ветер, направленный с прибрежных невысоких гор(высотой до 1000 м) на море. Бора распространяется в глубь моря на несколько километров, а вдоль побережья - на несколько десятков километров. Вертикальная мощность потока составляет примерно200 м . Новороссийская бора (норд-ост), наблюдающаяся в холодную половину года со скоростью40 - 60 м/с , вызывает понижение температуры до минус20 - 25° С . Разновидностью боры является сарма - ветер, дующий на западном берегу Байкала.

Фен - теплый сухой ветер, направленный с гор, часто сильный и порывистый. При фене на наветренной стороне хребта наблюдаются сложные метеорологические условия (облачность, осадки, плохая видимость), на подветренной стороне, наоборот, - сухая, малооблачная погода. Фены чаще всего наблюдаются в Закавказье, на Северном Кавказе и горах Средней Азии.

Афганец - жаркий и очень пыльный ветер южного и юго-западного направления. При афганце видимость на большой территории сильно ухудшается, затрудняя полеты самолетов и особенно их взлет и посадку. На юге Таджикской ССР и юго-востоке Туркменской ССР афганец наблюдается во все времена года.

Средний ветер слоя атмосферы - расчетный ветер, который оказывает такое же результирующее действие на тело за время его прохождения данного слоя, как и реальный ветер в этом слое. Данные о среднем ветре в различных слоях атмосферы дают возможность судить о направлении и скорости перемещения радиоактивного облака, а, следовательно, об уровне радиации и площадях опасных зон заражения атмосферы и местности. Расчет и графическое отображение среднего ветра производятся в метеоподразделениях по данным радиопилотных наблюдений.

Эквивалентный ветер. Для упрощения выполнения некоторых навигационных расчетов пользуются эквивалентным ветром.

Эквивалентным ветром W 2 называется условный ветер, направление которого всегда совпадает с линией заданного пути ЛЗП, а его скорость в сумме с воздушной скоростью дает такую же путевую скорость, как и действительный ветер.

Рассмотрим основные метеорологические элементы:

· температура воздуха;

· атмосферное давление;

· влажность воздуха;

· скорость и направление ветра;

· облачность;

· атмосферные осадки;

· метеорологическая дальность видимости (прозрачность атмосферы);

· солнечная радиация и тепловое излучение Земли.

Температура воздуха – важнейшая характеристика теплового состояния воздуха. В метеорологии температуру воздуха принято выражать:

а) в Международной практической температурной шкале (МПТШ), то есть в градусах Цельсия;

б) в градусах Фаренгейта °F.

в) в градусах Кельвина.

T (К) = 273,15 + t °C (2.1)

Атмосферное давление (Р) – это сила, которая действует на единицу поверхности. На практике давление измеряется высотой ртутного столба в мм, вес которой уравновешивает давление атмосферы.

Атмосферное давление впервые измерил итальянский ученый Эванджелиста Торричелли в 1644 году.

Нормальным атмосферным давлением (на уровне моря) принятое значение 760 мм ртутного столба (мм рт. ст.) при температуре 0 градусов Цельсия. Если давление атмосферы, например, 780 мм рт. ст., то это значит, что воздух имеет такое же давление, которое создает вертикальный столб ртути высотой 780 мм. Таким образом, за нормальное атмосферное давление принимают давление столбика ртути высотой 760 мм при 0 °С. Такое давление на практике принят за единицу давления и названо физической атмосферой (атм).

P = ρ · g · h , (2.2)

где ρ – плотность ртути, г/см 3 ; ρ ртути = 13,596 г/см 3 ;

g – ускорение свободного падения, g = 9,8 м/с 2 ;

1 атм = 13,6 · 10 3 кг/м 3 · 9,8 м/с 2 · 0,76 г = 1,013 ·10 5 н/м 2 .

В метеорологии давление измеряют в миллибарах (мб) ли гектопаскалях (гПа).

1 мб = 10 2 н/м 2 = 10 7 Дин/см 2

1 гг рт.ст. = 1333,3 Дин/см 2 = 1,33 мб = 1,33 гПа

1 мб = 0,75 мм рт.ст.

Влажность воздуха – это содержание в воздухе водного пара. Характеризуется рядом показателей, которые рассмотрены в лекции № 5.

Скорость и направление ветра. Ветром называют движение воздуха относительно земной поверхности. Направление ветра определяется той точкой горизонта, откуда он дует. Для обозначения направления ветра в метеорологической практике используют 16 румбов. Отсчет ведется от севера через восток. В таблице 2.1 приведен названия и обозначения румбов.

Таблица 2.1 – Названия и обозначение румбов

Название Сокращенное международное Сокращенное украинское Азимут, ° Румб
Северный N (норд) П 0 (360)
Северо-северо-восточный NNE (норд-норд-ост) ППС 22,5
Северо-восточный NE (норд-ост) ПС
Восточно-северо-восточный ENE (ост-норд-ост) СПС 67,5
Восточный E (ост) С
Восточно-южно-восточный ESE (ост-зюйд-ост) СПдС 112,5
Юго-восточный SE (зюйд-вест) ПдС
Южно-южно-восточный SSE (зюйд-зюйд-вест) ПдПдС 157,5
Южный S (зюйд) Пд
Южно-южно-западный SSW (зюйд-зюйд-вест) ПдПдЗ 202,5
Юго-западный SW (Зюйд-вест) ПЗ
Западно-южно-западный WSW (вест-зюйд-вест) ЗПдЗ 247,5
Западный W (вест) С
Западно-южно-западный WNW (вест-норд-вест) ЗПдЗ 292,5
Северо-западный NN (северо-западный) ПЗ
Северо-северо-западный NNW (норд-норд-вест) ППЗ 337,5

Скорость ветра принятая выражать в м/с, в некоторых случаях – в км/ч.

Облачность. Облака представляют собой систему капель воды или ледяных кристалликов, тех ли и других вместе, взвешенных в атмосфере на некоторой высоте над земной поверхностью. Совокупность облаков на небесном своде называют облачностью. При наблюдениях за облачностью на метеостанциях определяют количество, форму и вид облаков. Количеством облаков называют степень покрытия небесного свода облаками. Оно определяется визуально по десятибалльной шкале (от 0 до 10 баллов). Один балл означает, что облаками покрытая одна десятая часть небесного свода. Безоблачному небу отвечает 0 баллов, а полному покрытию неба облаками – 10 баллов.

Атмосферные осадки. Атмосферными осадками называют все виды воды в жидком или твердом состоянии, которые выпадает из облаков.

Количество осадков выражается высотой слоя воды в мм, что образовался бы в результате выпадения осадков на горизонтальной поверхности при отсутствии испарения, просачивание и стока, а также при условии, что осадки, выпавшие в твердом виде, полностью растаяли. Интенсивностью осадков называют их количество в мм, которое выпадает за одну минуту.

Метеорологическая дальность видимости – это наименьшее расстояние, на котором наблюдаемый объект под влиянием атмосферной дымки не отличается от окружающего его фона, то есть становится невидимым.

МЕТЕОРОЛОГИЧЕСКИЕ ЯВЛЕНИЯ

Результаты взаимодействия некоторых атмосферных процессов, которые характеризуются определенными сочетаниями нескольких метеорологических элементов, называются атмосферными явлениями.

К атмосферным явлениям относятся: гроза, метель, пыльная бурая, туман, смерч, полярное сияние и др.

Все метеорологические явления, за которыми осуществляются наблюдение на метеорологических станциях, разделяются на такие группы:

- гидрометеоры , представляют собой сочетание редких и твердых или тех и других вместе частиц воды, взвешенных в воздухе (облака, туманы), которые выпадают в атмосфере (осадки); которые оседают на предметах возле земной поверхности в атмосфере (роса, иней, гололедица, изморозь); или поднятых ветром с поверхности земли (вьюга);

- литометеоры , представляют собой сочетание твердых (не водных) частичек, которые поднимаются ветром с земной поверхности и переносятся на некоторое расстояние или остаются взвешенными в воздухе (пыльная поземка, пылевые бури и др.);

- электрические явления, к которых належат проявления действия атмосферного электричества, которые мы видим или слышим (молния, гром);

- оптические явления в атмосфере, которые возникают в результате отражения, преломление, рассеяние и дифракции солнечного или месячного света (гало, мираж, радуга и др.);

- неклассифицированные (разные) явления в атмосфере, которые тяжело отнести к какому-нибудь виду, указанного выше (шквал, вихрь, смерч).

№3 . Метеорологические элементы и явления.

Физическое состояние атмосферы в данном месте в конкретное время характеризуется метеорологическими эле­ментами и явлениями.

Большинство физических характеристик атмосферного воздуха являются ме­ теоэлементами: температура, давление, плотность и влажность, ветер, облач­ность, дальность видимости и др. Нередко в атмосфере протекают физические процессы, сопровождающиеся резкими изменениями состояния, которые не всегда можно оценить только количественно. Такие физические процессы носят название метеорологических явлений: осадки, туманы, грозы, оптические и электрические явления, пыльные и песчаные бури, смерчи, метели и т. п.

Совокупность метеоэлементов и явлений, определяющих физическое состоя­ние атмосферы в определенный момент времени в конкретном районе, называ­ется погодой.

Метеорологические элементы и явления оказывают существенное влияние как на безопасность мореплавания, так и на использование технических средств судовождения и экономические показатели морских перевозок.

Температура воздуха. Для нужд мореплавания температура воздуха измеря­ется в градусах международной метеорологической шкалы (ММШ) или шкалы Цельсия (t°С). В Гидрометеорологических очерках лоций температура воздуха иногда дается в градусах шкалы Фаренгейта. Соотношение между этими двумя шкалами выражается формулой:

t°C=5/9(t°F-32)

Атмосферное давление. Любой слой атмосферного воздуха, находящегося в
состоянии покоя, испытывает давление, равное массе всего вышележащего объёма. Восходящие движения в атмосфере будут уменьшать это давление, а нисходящие - увеличивать. Единицами атмосферного давления являются мм.рт.ст. и гПа. Между этими единицами существует соотношение:

Влажность воздуха. Нижние слои атмосферы всегда и в любой точке Земли содержат в том или ином количестве водяной пар. Влагосодержание в воздухе колеблется в пределах от 0,3 до 4% (по объему) и характеризуется несколькими величинами.

Ветер - горизонтальная составляющая движения атмосферного воздуха. Ветер характеризуется направлением и скоростью. Направление ветра оценивается вградусах круга по часовой стрелке или в румбах (1/16 круга = 22.5 º: N. NNE, NE, ЕХЕ и т. д.). Направление - это угол между направлением на север (N, 0°) и точкой горизонта, откуда дует ветер, т. е. ветер«дует в компас». Скорость ветра измеряется в м/с или уз., а иногда в баллах по 12-бальной шкале Бофорта: 0 соответствует скорости ветра 0 м/с (штиль), а 12 баллов – урагану (>29м/с). На движущемся судне измеряется кажущийся (W) ветер, который является векторной суммой истинного (U) и курсового (Vc) ветров. Курсовой ветер ра­вен по величине скорости судна, а по направлению противоположен ему. На­правление и скорость истинного ветра определяются либо с помощью круга СМО, либо графически.

Облачность. Наблюдения за облаками заключаются в определении общего количества облаков, количества облаков нижнего яруса, высоты нижней грани­цы этих облаков, а также их формы (внешнего вида) согласно международной классификации. Количество облаков определяется по 10 - бальной шкале как степень (в десятых долях) покрытия видимой части небосвода. Отдельно опре­деляется количество общей облачности и количества нижнего яруса.

Видимость . От степени прозрачности атмосферы зависит дальность обнару­жения объектов и линии горизонта в море. Дальность видимости измеряется в метрах, кабельтовых, километрах, милях или баллах (цифрах) международного метеорологического кода.

С момента своего возникновения человечество постоянно подвергалось благоприятным или неблагоприятным влияниям атмосферы. К настоящему времени, несмотря на высокий уровень развития, большую защищенность людей от естественных катаклизмов, такие стихийные бедствия, как засуха, наводнения, смерчи наносят потери хозяйственной деятельности людей. Все это вызывает необходимость исследования метеорологических элементов и прогнозирование погоды. Для этого надо иметь знание об использовании исследовательских приемов метеорологических элементов на наземных метеорологических станциях, аэрологических станциях, с помощью самолетов, космических ракет.

◙ Основные положения, которые необходимо знать после изучения данного модуля.

1. знать определение метеорологии и климатологи и главные разделы метеорологии;

2. знать программу наблюдений на метеорологических станциях;

3.знать и уметь использовать метеорологические приборы;

4. знать методы аэрологических наблюдений;

5. знать роль метеорологической службы и Всемирной метеорологической организации.

Проблемная лекция 1 из модуля 1

«ПРЕДМЕТ И ЗАДАЧИ МЕТЕОРОЛОГИИ. МЕТОДЫ МЕТЕОРОЛОГИИ

И КЛИМАТОЛОГИИ. МЕТЕОРОЛОГИЧЕСКИЕ НАБЛЮДЕНИЯ»

ОПРЕДЕЛЕНИЕ МЕТЕОРОЛОГИИ И КЛИМАТОЛОГИ.

ОСНОВНЫЕ РАЗДЕЛЫ МЕТЕОРОЛОГИИ

Воздушная оболочка, которая окружает земную пулю, называется атмосферой. В атмосфере непрерывно происходят разнообразные физические, химические, биологические процессы, которые изменяют состояние как нижних, так и более высоких слоев атмосферы.

Метеорологией называется наука об атмосфере - воздушной оболочке Земли. Она относится к геофизическим наукам, поскольку в ней, на основе законов физики, изучаются определенные категории физических процессов, присущие Земному шару.

Климатология - это наука о климате, то есть о совокупности атмосферных условий, присущих определенной местности в зависимости от ее географической обстановки.

Климат есть, таким образом, одной из физико-географических характеристик местности. Он влияет на хозяйственную деятельность людей: на специализацию сельского хозяйства, географическое размещение промышленности, воздушный, водный и наземный транспорт. Итак, климатология - собственно говоря, географическая наука.

Основные задачи климатологии – изучение закономерностей формирования климата; исследование факторов, которые приводят к изменению климата; исследование взаимодействия климата с естественными факторами, сельским хозяйством и производственной деятельностью человека.

Климатология тесно связана с метеорологией. Понимание закономерностей климата возможно на основании тех общих закономерностей, каким подчинены атмосферные процессы. Поэтому при анализе причин возникновения разных типов климата и их распределения по Земному шару климатология исходит из понятий и законов метеорологии.

Одной из основных задач метеорологи есть объяснение сущности процессов, которые происходят в атмосфере. Поэтому метеорология может успешно развиваться только в связи с другими науками.

В первую очередь метеорология связана с географией, гидрологией, океанологией, физикой, математикой, химией. Вопрос атмосферных движений, фазовых превращений в атмосфере, температурный и тепловой режим атмосферы изучаются на основе законов гидромеханики и термодинамики. Оптические, электрические, акустические явления изучаются на основе законов физики. В метеорологии широко применяются методы математического моделирования.

Главные разделы метеорологии:

    Синоптическая метеорология – наука о погоде и методах ее прогнозирования.

    Физика атмосферы – наука, которая изучает термодинамические процессы в атмосфере, ее состав и строение, процессы образования облаков, туманов, осадков; изучает радиационные, оптические, электрические и акустические явления в атмосфере.

    Динамическая метеорология – основана на теоретических методах исследования и широко использует аппарат математического моделирования при изучении процессов атмосферной турбулентности, переноса лучистой энергии в атмосфере и т. др.

Можно выделить еще ряд разделов метеорологии, которые развивались несколько более позднее:

    агрометеорология – изучает влияние метеорологических условий на объекты и процессы сельскохозяйственного производства;

    биометеорология – изучает влияние атмосферных условий на человека и другие живые организмы;

    ядерная метеорология – изучает естественную и искусственную радиоактивность атмосферы, распространение в ней радиоактивных примесей, влияние ядерных и термоядерных взрывов на атмосферу;

    радиометеорология – изучает влияние метеорологических условий на распространение радиоволн в атмосфере, а также исследует атмосферные процессы с помощью радиолокации.

Основная задача метеорологии – изучение атмосферных явлений за счет накопления данных об изменениях в пространстве и во времени. Конечной целью метеорологии есть отыскание возможностей и конкретных путей управления атмосферными явлениями и изменения их в желательном для нас направлении.

Промежуточные задачи, которые решает метеорология, сводятся к следующему:

    получение точных данных, которые характеризуют атмосферные процессы и явления;

    объяснение атмосферных процессов и явлений, то есть установление законов, управляющих их развитием;

    использование найденных закономерностей для разработки методов прогнозирования атмосферных процессов;

    применение найденных закономерностей развития атмосферных процессов для активной борьбы против опасных и вредных метеорологических явлений, для более полного использования сил природы в практической деятельности человека.

Для решения первой задачи в метеорологии широко используется метод наблюдений. На всем земном шаре существуют метеорологические обсерватории, станции и посты, на которых ведутся наблюдения за состоянием атмосферы по всей ее толще. Существуют также самолетные, вертолетные, спутниковые наблюдения. В последнее время все более широко используется экспериментальный метод, который состоит в том, что как в естественных, так и в лабораторных условиях специально создаются или искусственно воссоздаются те или другие атмосферные явления, что позволяет изучить закономерности их развития. Для решения трех последних задач широкое применение получи теоретический метод, основанный на использовании законов физики, термодинамики, гидромеханики, методов математического моделирования. Для решения четвертой задачи успешно практикуется искусственное рассеяние туманов и облаков.

Метеорологические наблюдения делятся на прямые и косвенные.

К прямым относятся непосредственные инструментальные и визуальные наблюдения за метеорологическими характеристиками, например, температурой воздуха, количеством облаков.

К косвенным относятся такие наблюдения, на основании которых получают сведение о других, непосредственно не наблюдаемых характеристиках. Например, при наблюдениях за движением облаков получают сведения о ветре на высотах; по результатам наблюдений за полярным сиянием определяют газовый состав высоких слоев атмосферы и т.д.

Общие понятия. Основные задачи метеорологии - это изучение процессов изменения метеорологических элементов и явлений в пространстве и во времени, раскрытие физической сущности и закономерностей таких процессов, а также разработка способов прогноза (предсказания) изменений погоды.

За условную границу окружающей Землю газовой оболочки - атмосферы - принимается высота 1000 км, на которой еще наблюдаются полярные сияния. Верхний слой атмосферы - ионосфера - отличается повышенной электропроводностью и способностью отражать радиоволны. Ее нижняя граница находится на высоте 70-80 км от поверхности Земли. Ниже ионосферы располагается следующий слой воздуха - стратосфера. Ее нижняя граница находится на высоте 10-12 км от поверхности Земли. Примечательным для стратосферы являются сильные ветры. Обычные метеорологические явления (сильная конвекция, возникновение облаков, выпадение осадков и т. п.) присущи нижнему слою воздуха - тропосфере.

Температура воздуха в тропосфере понижается с увеличением высоты. В нижних слоях тропосферы, до высоты около 1,5 км, температура воздуха убывает в среднем на 0°,5С на каждые 100 м высоты. Изменение температуры воздуха по вертикали характеризуется вертикальным градиентом температуры: при падении температуры с увеличением высоты он имеет положительное значение; при увеличении - отрицательное.

Минимум температуры наблюдается перед восходом Солнца и максимум - около 14 ч. Суточные амплитуды -суточный ход температуры воздуха - над морем при одних и тех же условиях имеют меньшие величины, чем над сушей; обычно они немного больше, чем амплитуда колебания температуры воды - 1,5-2°С. Наибольшая температура над морем наступает в среднем в 12 ч 30 мин. С увеличением широты суточный ход температура воздуха уменьшается. В летние месяцы и в ясные дни он больше, чем в зимние месяцы и в пасмурные дни.

Годовой ход инсоляции и излучения земной поверхности обусловливают годовой ход температуры воздуха; максимум приходится обычно на август; минимум - на февраль (северное полушарие). С увеличением широты до 40° годовой ход возрастает; в высоких широтах он незначителен. В табл. 3 приведено распределение средних температур по параллелям.

Таблица 3

Температуру воздуха на судах измеряют с помощью обычных ртутных термометров, имеющих специальные оправы для защиты их от осадков и воздействия прямых солнечных лучей. Непрерывная регистрация температуры воздуха осуществляется термографом (рис. 107). Чувствительным элементом этого прибора является биметаллическая пластинка, один конец которой закреплен в кронштейне, а другой через систему рычагов соединен со стрелкой, несущей на своем конце перо. Перо касается бумажной ленты, укрепленной на барабане, вращающемся от часового механизма вокруг своей оси. Биметаллическая пластинка изгибается пропорционально величине изменения температуры, а связанное с ней перо воспроизводит на вращающейся ленте линию хода температуры воздуха.

Влажность воздуха. Абсолютной влажностью называется вес (q) в граммах водяного пара, содержащегося в 1 м³ воздуха. Количество водяного пара в воздухе чаще выражают величиной его упругости е, выраженной в миллиметрах ртутного столба в миллибарах:


где t - температура по сухому термометру психрометра;

T" - температура по влажному термометру психрометра;

Р - атмосферное давление.

Наибольшая абсолютная влажность наблюдается при наибольшей температуре воздуха: после полудня, в самые теплые месяцы, в наиболее теплых морях.


Рис. 107.


Воздух с максимально возможным при данной температуре содержанием пара называется насыщенным. Давление упругости пара, насыщающего воздух, обозначают Е. Температура, при которой в воздухе с заданной абсолютной влажностью наступит насыщение, называется точкой росы. Разность между упругостью паров, насыщающих воздух при данной температуре, и фактической упругостью паров, содержащихся в воздухе, называется не достатком (дефицитом) насыщения.

Относительной влажностью (r) называется отношение упругости водяного пара, содержащегося в воздухе (абсолютная влажность), к упругости водяного пара, насыщающего воздух при данной температуре, т. е.


С изменением широты относительная влажность меняется незначительно. Суточный и годовой ход относительной влажности обычно противоположен суточному и годовому ходу температуры воздуха. Над морями относительная влажность практически постоянна (80%).

Аспирационный психрометр. Температура и влажность воздуха имеют исключительно важное значение для мореплавания: в соответствии с ними определяют режим вентиляции судовых трюмов в целях сохранной перевозки грузов. Температуру и влажность воздуха определяют с помощью аспирационного психрометра (рис. 108), состоящего из двух одинаковых ртутных термометров т, резервуары р которых находятся в специальных трубках, соединяющихся с центральной трубой ц аспиратора о. Пружинный завод аспиратора позволяет его вентилятору протягивать воздух через центральную трубу так, что во время измерения резервуары обоих термометров постоянно омываются потоком наружного воздуха.

Рис. 108.


Резервуар правого термометра аспирационного психрометра должен быть обернут батистом, перед наблюдением его надо смачивать дистиллированной водой с помощью прилагаемой к прибору пипетки. К прибору прилагается номограмма для определения относительной влажности; пользование такой номограммой подробно изложено в заводской инструкции прибора. Значения температур сухого и смоченного термометров позволяют с помощью специальных Психрометрических таблиц определить абсолютную q, относительную г влажность воздуха, а также точку росы т.

Для определения параметров влажного воздуха могут быть использованы также диаграммы i-d и t-т. Первая применяется в технических расчетах по кондиционированию воздуха помещений, вторая - при расчетах, связанных с микроклиматом грузовых помещений - трюмов, складов и т. д.

Непрерывную запись относительной влажности воздуха получают с помощью волосяного гигрографа, чувствительным элементом которого служит пучок обезжиренных волос. Последние изменяют длину пропорционально изменению относительной влаж- поста воздуха и через систему рычагов приводят в движение индикаторную стрелку с пером. Развертывание показаний прибора по времени осуществляется с помощью часового механизма и барабана, устройство которых аналогично у вышеописанного термографа.

Облака - скопление мельчайших капель или кристаллов льда в высоких слоях атмосферы. В суточном ходе облачности летом наблюдаются два максимума - рано утром и после полудня, зимой - в утренние и ночные часы. Максимума облачность достигает в экваториальной зоне, минимума - в широтах 30-35°. Отсюда она вновь увеличивается, достигая второго максимума в широтах 60-80°, а к полюсу вновь несколько убывает.

Все облака делятся на три класса: нижнего (высота ниже 2 км) , среднего (от 2 до 6 км) и верхнего (высота более 6 км) ярусов.

Облачность измеряется в баллах от 0 до 10, в зависимости от того, сколько десятых частей неба закрыто облаками. Так, например, над Белым морем среднее годовое значение облачности равно 0,8; в Асуане - 0,5 балла.

Осадки. Различают осадки, выпадающие из облаков (дождь, снег, ледяной дождь, снежная крупа, ледяная крупа, град, снежные зерна) и выделяющиеся на поверхности земли и предметов (роса, иней, изморозь, жидкий налет, твердый налет, гололед).

Количество осадков выражается толщиной слоя воды, покрывающего земную поверхность при выпадении осадков, и измеряется в миллиметрах (мм).

Наибольшее среднее годовое количество осадков наблюдается в Черрапунджи (Индия) - 12 665 мм. В Батуми в среднем за год выпадает 2500 мм.

Видимость - предельное расстояние, дальше которого наблюдаемый объект сливается с фоном и становится невидимым. Видимость зависит от прозрачности атмосферы, возрастающей с увеличением широты. Для оценки видимости пользуются специальной шкалой. Шкала горизонтальной видимости приведена в МТ-63, табл. 51.

Туманы - скопление продуктов конденсации водяного пара в близких к поверхности земли слоях воздуха. Различают следующие виды туманов: дымка (размер капелек не превышает 0,0005 мм, а видимость от 1 до 10 км), слабый туман (видимость от 500 м до 1 км), сильный туман (видимость менее 50 м) .

Подробные сведения о туманах, их распределении, суточном и годовом ходе можно найти в соответствующих лоциях.

Атмосферное давление - это давление, создаваемое весом воздуха. Нормальное давление воздуха уравновешивает столб ртути в 760 мм на уровне моря в широте 45° при температуре 0°С. Часто атмосферное давление выражают в миллибарах (1 мб = 0,75лш; 1 мм = 1,33 мб) . Шкалы перехода миллиметров атмосферного давления в миллибары и миллибаров в миллиметры приведены в МТ-63, № 48-а и 48-6 соответственно.

Линии, соединяющие на карте точки с равным атмосферным давлением, называются изобарами, а определяемое расположением изобар распределение давлений на каком-либо горизонтальном уровне - барическим полем. В различных точках определенного горизонтального уровня давление атмосферы может быть различным. Разность таких давлений в сторону наибольшего его падения называется барическим градиентом. Тип падения (или повышения) давления характеризуется системами расположения изобар. Такие системы определяют формы барического рельефа.


Рис. 109.


Атмосферное давление на судах измеряют" барометром-анероидом (рис. 109), чувствительным элементом которого является герметическая тонкостенная металлическая коробка, из которой практически откачан весь воздух. Такая «барометрическая» коробка сжимается либо расширяется («дышит») с изменением атмосферного давления, а ее деформации через систему рычагов фиксируются на специальной шкале с помощью индикаторной стрелки. Правила исправлений показаний барометра-анероида и необходимые для этого таблицы приводятся в прилагаемой к прибору заводской инструкции.

Непрерывная регистрация изменения атмосферного давления осуществляется барографом с помощью пишущего на барабанной ленте пера, приводимого в движение рычагами, связанными с набором спаянных между собой (столбиком) барометрических коробок.

Ветер - горизонтальное передвижение воздуха, вызванное разностью атмосферного давления (рис. 110). Ветер характеризуется направлением, скоростью и силой. На экваторе направление ветра совпадает с барическим градиентом; воздух перемещается от центров высокого давления к центрам низкого давления. Однако к северу и югу от экватора, вследствие влияния силы Кориолиса и центробежной силы, ветер отклоняется от направления градиента вправо в северном и влево в южном полушариях. Таким образом, в северном полушарии, став спиной к ветру, наблюдатель будет иметь низкое давление слева; в южном полушарии соответственно - справа.

Сила ветра зависит от величины барического градиента. Для оценки силы ветра пользуются специальной шкалой Бофорта, приведенной в МТ-63, табл. 49.

На движущемся судне наблюдается кажущийся ветер. Определение направления истинного ветра показано на рис. 111, где:


Рис. 110.



Рис. 111.


V - вектор скорости судна, м/сек;

Vkв b - вектор кажущегося ветра, откладываемый в сторону, противоположную направлению этого ветра, м/сек;

Vнв - вектор скорости истинного ветра, направление которого противоположно направлению действительного ветра, м/сек.

Вместо построения на листе бумаги направление истинного ветра определяют ветрочетом - кругом СМО (рис. 112), значительно упрощающим и ускоряющим решение векторного треугольника.

Скорость ветра на судах измеряют с помощью ручного анемометра (рис. 113). Обращенные в одну сторону четыре полушария заставляют крестовину анемометра вращаться в одну сторону со скоростью, пропорциональной скорости ветра. Вращение крестовины через систему шестеренок передается счетчику оборотов. Количество оборотов крестовины в секунду (обычно среднее за 100 сек) позволяет по специальной шкале, прилагаемой к прибору, определить скорость ветра в метрах в секунду. В суточном ходе скорость ветра с утра возрастает, к вечеру - ослабевает.

В малых и реже в умеренных широтах преимущественно в теплое время года наблюдаются смерч и - вихри большой разрушительной силы с диаметром до 100 м, высотой от 100 до 1000 м, скоростью вращательного движения до 100 м/сек и скоростью поступательного движения до 30-40 км/ч. Продолжительность смерча от нескольких минут до 3-4 ч. Разновидность смерча - торнадос с диаметром до 300 м и скоростью перемещения до 70 км/ч. Очень опасно резкое увеличение ветра от штиля до значительной величины. Такой ветер называется шквалом.


Рис. 112.



Рис. 113.


Пассаты - постоянные ветры, дующие в экваториальной зоне по обе стороны экватора до широты 30°. В северном полушарии направление пассатов от северо-востока, в южном - от юго-востока; скорость 6-8 м/сек (4 балла) . Области пассатов у термического экватора разделены полосой затишья. Области пассатов характеризуются в основном ясной погодой и малым количеством осадков.

Муссоны - ветры, дующие зимой с суши на море, а летом - с моря на сушу. Летние муссоны отличаются влажностью, большой облачностью и осадками, зимние - сухой, ясной и безоблачной погодой. В Индийском океане северо-восточный муссон имеет силу 2-5 баллов, юго-западный достигает силы шторма. Смена муссонов происходит в апреле - мае и в октябре - ноябре.

В отдельных пунктах наблюдаются местные ветры.

Бризы - ветры Приморских побережий, дующие Днем с Моря на сушу, ночью - с суши на море.

Бора - холодный ветер ураганной силы от северо-востока, спускающийся из охлажденных мест вдоль крутых склонов к морю. Наблюдается в Цемесской бухте (Новороссийск) и у северных берегов Адриатического моря.

Фен - теплый сухой ветер, дующий с гор.

Сведения о ветрах на морях приводятся на ежемесячных гидрометеорологических картах и в морских атласах.

Вперед
Оглавление
Назад